Utility of cox1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore

Jin Phang Loh1, DrPH, Qiu Han Christine Gao2, MSc, Vernon J Lee2, MBBS, Kevin Tetteh3, PhD, Chris Drakeley3, PhD

1Defence Medical & Environmental Institute, DSO National Laboratories, 2Biodefence Centre, Singapore Armed Forces, Singapore, 3London School of Hygiene and Tropical Medicine, United Kingdom

Correspondence: Dr Jin Phang Loh, Principal Member of Technical Staff, DSO National Laboratories, 27 Medical Drive, Singapore 117510. jimmyloh@dso.org.sg

Singapore Med J 2016, 1–9
doi: 10.11622/smedj.2016016
Published ahead of print: 25 January 2016

ABSTRACT

Introduction: Despite several phylogenetic studies on *Plasmodium knowlesi* (*P. knowlesi*), only cytochrome oxidase 1 (*cox1*) gene analysis has shown some geographical differentiation between the isolates of different countries.

Methods: Phylogenetic analysis of locally acquired *P. knowlesi* infections, based on the circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and *cox1* gene targets, were performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand.

Results: Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional *P. knowlesi* isolates showed no obvious differentiation that could be attributed to their geographical origin. However, *cox1* gene analysis showed that it was possible to differentiate between Singapore-acquired *P. knowlesi* infections and *P. knowlesi* infections from Peninsular Malaysia and Sarawak.

Conclusion: The ability to differentiate between locally acquired *P. knowlesi* infections and imported *P. knowlesi* infections has important utility for the monitoring of *P. knowlesi* malaria control programmes in Singapore.

Keywords: cytochrome oxidase subunit 1, phylogenetics, Plasmodium knowlesi
INTRODUCTION

In 2004, a cluster of malaria cases in Kapit Division, Sarawak, Malaysia, was attributed to *Plasmodium knowlesi (P. knowlesi).*\(^1\) Since this discovery of *P. knowlesi* infection in humans, cases have been reported in most Southeast Asian countries. In Singapore, the first reported case of *P. knowlesi* infection occurred in a military serviceman in 2007.\(^2\) Isolated cases of *P. knowlesi* infection in Singapore have since been reported, although they are still very rare, with only two cases from the military reported between 2008 and 2013.\(^3\) Preventive measures taken by the military, such as the use of permethrin-impregnated uniforms and advisories on the use of long-sleeved uniforms and mosquito repellents, likely contributed to this very low incidence rate. A preliminary study involving macaque sampling in various forested areas in Singapore indicated that the *P. knowlesi* infection was localised to the forested area in the north-western end of Singapore; peri-domestic monkeys from other parts of the island tested negative for malaria.\(^4\) It was therefore concluded that the risk of the general population of Singapore acquiring *P. knowlesi* infection was small.

Phylogenetic studies on *P. knowlesi* using the genes of the small subunit ribosomal RNA (*ssu rRNA*), circumsporozoite (*csp*) and merozoite surface protein 1 (*msp1*)\(^{1,5,6}\) showed genetic heterogeneity within *P. knowlesi,* but none of these genes appeared to be suitable for phylogeographic differentiation. In the study by Fong et al,\(^7\) the authors showed phylogenetic clustering of *P. knowlesi* isolates based loosely on geographic region using the mitochondrial cytochrome oxidase subunit 1 gene (*cox1*) as a marker. Fong et al demonstrated the ability to separate *P. knowlesi* isolates into three geographic clusters – Peninsular Malaysia, Sarawak and Thailand – using *cox1* genetic diversity analysis.\(^7\)

In the present study, the aforementioned four gene targets (i.e. *ssu rRNA, csp, msp1* and *cox1*) were amplified from selected isolates from Singapore patients in an attempt to determine their relatedness with isolates from other parts of Southeast Asia. We also sought to determine
whether there were genetic markers that would be suitable for distinguishing between locally acquired \textit{P. knowlesi} malaria and imported cases of \textit{P. knowlesi} malaria. These markers, if any, would have important utility in the monitoring of the effectiveness of \textit{P. knowlesi} malaria control programmes.

METHODS

DNA was extracted from blood samples using the QIAamp DNA Mini Kit (Qiagen Inc, Hilden, Germany) according to the manufacturer’s protocol for processing blood. The DNA sequences of the \textit{P. knowlesi ssu rRNA}, \textit{csp} and \textit{msp1} genes were determined using polymerase chain reaction (PCR) products that were subcloned using the pGEM-T Easy Vector System (Promega, Madison, WI, USA); four recombinant plasmid clones were used for each isolate tested. Primers rPLU5 and rPLU6 were used for the amplification of a 1.3-kb fragment of the \textit{ssu rRNA} gene,\(^1\) primers PkCSP2-F and PkCSP2-R were used to amplify a 1.2-kb fragment of the \textit{csp} gene,\(^5\) and primers PKMSP1F and PKMSP1R were used for amplification of a 1-kb fragment of the \textit{msp1} gene.\(^6\) A 692-bp fragment of the \textit{cox1} gene was sequenced directly from purified PCR product that was amplified using primers PKCOX1-F and PKCOX1-R.\(^7\) Sequences were aligned using ClustalW (EMBL-EBI, Hinston, Cambridgeshire, UK) and Lasergene MegAlign (DNASTAR, Madison, WI, USA). Phylogenetic trees were constructed using the maximum parsimony method with 1000 bootstrap replicates, as implemented by the MEGA software version 6.0.\(^8\) The \textit{csp}, \textit{msp1}, \textit{ssu rRNA} and \textit{cox1} gene sequences for the non-Singapore isolates were obtained from GenBank.

RESULTS

The \textit{csp}, \textit{ssu rRNA} and \textit{msp1} phylogenetic analysis showed no obvious difference between the \textit{P. knowlesi} isolates from Singapore and those from other Southeast Asian countries (Figs. 1a–c). The eight tested \textit{P. knowlesi} isolates from Singapore were widely dispersed in different clades
containing isolates from Malaysia or Thailand. There were no two isolates that were closely associated with each other across the three genes examined.

The *cox1* phylogenetic analysis, however, showed that there was some difference between the majority of the *P. knowlesi* isolates from Singapore, and the isolates from Malaysia and Thailand; the majority of the *P. knowlesi* isolates from Singapore formed a separate clade (Fig. 2). One major difference observed between the *P. knowlesi* isolates from Malaysia and those from Singapore was at nucleotide position 646. The isolates from Malaysia harboured the 646C allele, while six of the eight isolates from Singapore had the 646T allele, similar to that of the isolate from Thailand. These six isolates also shared the same 295T allele as the isolates from Thailand and Peninsular Malaysia, rendering the six isolates from Singapore and the isolate from Thailand indistinguishable based on these two alleles. In the same phylogenetic tree, two *P. knowlesi* isolates from Singapore (PK610 and MP299) were shown to cluster together with the isolates from Sarawak, which is part of Malaysia but geographically distinct from Peninsular Malaysia (i.e. it is located on the island of Borneo). These two isolates from Singapore had the 646C allele (similar to all the isolates from Malaysia) and the 295C allele (which is found in the isolates from Sarawak), therefore setting them apart from the other six isolates from Singapore and suggesting that these two isolates were likely imported cases of *P. knowlesi* malaria from the Sarawak region rather than locally acquired *P. knowlesi* malaria.

DISCUSSION

Sequencing and phylogenetic analysis of the *cox1* gene from selected *P. knowlesi* isolates from Singapore showed that the *P. knowlesi* isolates from Singapore form a distinct clade, one that is separate from the clades formed by the *P. knowlesi* isolates from Thailand, Peninsular Malaysia and Sarawak, albeit being closer to the clade formed by the isolates from Thailand. Our *cox1* phylogenetic analysis also showed that two of the *P. knowlesi* isolates from Singapore (PK610
and MP299) clustered with the isolates from Sarawak, indicating that they were likely to be imported cases of *P. knowlesi* infection from Malaysia. This is possible as both cases came from the general public and presented with malaria in public hospitals. Unfortunately, the case and travel histories of isolate MP299 and PK610 were not available for further analysis and confirmation.

Through the use of *cox1* gene analysis, it may be possible to differentiate between local and imported *P. knowlesi* infections. This is of importance to local health authorities who carry out *P. knowlesi* malaria control activities. The similarities between the isolates from Singapore and Thailand also need to be investigated further as the two countries are separated by Peninsular Malaysia, which runs for over 700 km. The import of *P. knowlesi* from Singapore to Thailand, or vice versa, in the distant past is therefore a possibility. Research is currently in progress to develop single nucleotide polymorphism (SNP) PCR assays that target the 295 and 646 allele for the *cox1* gene, so as to enable faster differentiation of local and imported *P. knowlesi* infections prior to sequencing for confirmation.

In conclusion, the present study has shown that although it would be difficult to distinguish between locally acquired and imported *P. knowlesi* malaria using the genetic information of *ssu* rRNA, *msp* and *csp*, it may be possible to do so using the *cox1* gene.

ACKNOWLEDGEMENTS

This study was funded by the Ministry of Defence, Singapore, and DSO National Laboratories, Singapore.
REFERENCES

FIGURES

1a

1b

Nucleotide Substitution per 100 residues
Bootstrap Trials = 1000, seed = 111
Fig. 1 Phylogenetic diagrams show the genetic diversity of (a) the *csp* gene sequences from the *P. knowlesi*-positive samples from Singapore and Malaysia; (b) the *ssu rRNA* gene sequences from the *P. knowlesi*-positive samples from Singapore, Thailand and Malaysia; and (c) the *msp* gene sequences from the *P. knowlesi*-positive samples from Singapore, Thailand and Malaysia. No distinct clustering for the isolates from Singapore (red text) was observed for all three genes. The phylogenetic tree was constructed using the maximum parsimony method. Figures on the branches are bootstrap percentages based on 1,000 replicates. The scale bar at the base of the figure depicts the number of nucleotide differences. The phylogenetic analysis was conducted using MEGA6.\(^8\)
Fig. 2 Phylogenetic diagram shows the genetic diversity of the *cox1* gene sequences from the *P. knowlesi*-positive samples from Singapore, Thailand and Malaysia. A distinct cluster was observed for the isolates from Singapore (red text). The phylogenetic tree was constructed using the maximum parsimony method. Figures on the branches are bootstrap percentages based on 1,000 replicates; only those above 50% are shown. The scale bar at the base of the figure depicts the number of nucleotide differences. The phylogenetic analysis was conducted using MEGA6.\(^8\)